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Abstract  

In this study, we discuss the optimal power allocation for designing MIMO radar waveforms, taking into account both peak and total 

power limitations. Both methods involve estimating the target impulse response, one by reducing the mean square error and the other by 

maximizing the mutual information between the target impulse response and the reflected waveforms. The radar sender is believed to be 

aware of the target's second-order statistics. Typically, the transmitter's total power restriction dictates how much of the available power 

is distributed to each of the antennas. However, the dynamic range and peak output of the power amplifier at each antenna is severely 

constrained by the huge power differences across the transmit antenna. In actuality, the maximum allowable peak power for any given 

antenna is the same across the board. Consequently, the peak power limitation of the transmit antennas should be taken into account. In 

order to limit the power amplifier's dynamic range at each transmit antenna, a new generalized constraint that satisfies both the peak 

power restriction and the average total power constraint has been developed. As a specific example of the sum power limitation, p = 1, 

the waterfalling idea of optimum power allocation holds. Numerical solutions are found using a nested Newton-type technique, whereas 

the ideal solution is determined using the Karush-Kuhn-Tucker (KKT) method, which maximizes mutual information while reducing 

mean square error. Simulation findings reveal that at low signal-to-noise ratios, the detection performance of the system improves when 

both the total and peak power limits are taken into account. 

 

 Introduction 

 

MIMO radar, which uses multiple inputs and 

outputs, is a promising new development in the 

field of radar technology. More than 50 years ago, 

Woodward and Davies [1,2] advocated using 

information theory in radar. According to [3], it is 

best to maximize the mutual information (MI) 

between the extended target reflection and the 

received signal if the latter follows a Gaussian 

distribution. It's the first-time information theory 

has been used in the creation of a radar waveform, 

so far as we know. In [4], the parameters of many 

targets are estimated and tracked using a radar 

waveform designed using an information theoretic 

technique. For information-theory-based sensing 

applications like adaptive radar, the authors of [5] 

have presented a criterion for waveform selection. 

Information theoretic and estimation theoretic 

criteria for optimum waveform design have been 

used in recent research in the field of radar target 

detection and classification. Waveform design for 

multi-input multi-output (MIMO) radar (e.g., see 

[7–15]) has been the subject of previous studies 

(e.g., [6]), which sought to optimize for both 

maximum MI and minimal mean square error 

(MMSE). It was shown that the optimal solution 

obtained using these two distinct criteria is 

equivalent. Even an asymptotic formulation [6] 

based just on power spectral density (PSD) 

information confirms this. However, 

comprehensive understanding of the PSD may be  

challenging in actual use. The use of robust 

techniques, which account for modelling 

uncertainty in the design phase [16], may help in 

such a situation. Seem like a lot of fun. Information 

theoretic and estimate theoretic criteria are applied 

in the construction of the best signal for estimating 

correlated MIMO channels in [17]. 
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Notation  

Matrices and vectors are denoted by the bold 

capital and lowercase characters, respectively. The 

transpose and complex conjugate transpose of a 

matrix are indicated by the superscripts’and, 

respectively. The determinant and trace of a matrix 

are shown by the notation det. and tr. The notation 

" " represents the Euclidean norm of a vector, 

whereas the notation diagram represents a diagonal 

matrix whose diagonal is the vector a. The notation 

N m; R stands for a complex Gaussian distribution 

with mean m and covariance matrix R. Last but not 

least, the positive value of an is represented by (a) 

+, where (a) + = max[0,a].  

A Model of the System 

 Think of a MIMO radar that can cover a larger 

area by using N receiving antenna elements and M 

sending antenna elements. It is believed that the 

target is a location somewhere between the 

antennas being used for transmission and reception. 

The part of the received signal at the nth antenna 

element at time instant k is given by 

 

where is(k) represents the transmit signal at the itch 

transmit antenna, him is the target impulse response 

from the itch transmit antenna to the nth receive 

antenna, and ξn(k) is the noise in the nth receive 

antenna. The components of the noise vector are 

assumed to be independent 

and identically distributed (i.i.d.) Gaussian random 

variables with zero mean and variance σξ 2 . In 

vector form, the signal model is written as 

Waveform design 

 with p-norm power constraint According to 

Hadamard’s inequality, the optimal solution of (11) 

and (14) can be achieved when (IM + ΛD)  

 

Hadamard’s inequalities for the determinant and 

trace of an n × n positive semidefinite Hermitian 

matrix A are  

 

where aii is the ith diagonal element of A, and 

equality is achieved in both cases if and only if A is 

diagonal [27]. Thus, D = XHX must be a diagonal 

matrix with nonnegative elements  

 

. Now, the mutual information in (10) can be 

written as 

 

 It can be shown that (16) is concave as a function 

of D [28]. Similarly, the minimum mean square 

error in (13) can be written as 

 

The MMSE function in (17) is convex as a function 

of D [18]. If D = XHX should be a diagonal matrix, 

the columns of X should be orthogonal. Hence, X 

is factored as [29] 

 

where the columns of φ are orthonormal. As X = 

SU, the transmitted signal matrix is given by 

 

here dii is the diagonal element of D. The two 

problems given in (11) and (14) are convex 

optimization problems that can be solved using the 

KKT optimality conditions [28]. 

Detection performance - Neyman-

Pearson detector  

The MIMO radar detection problem can be 

formulated as a binary hypothesis test as 
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The probability density functions (pdfs) of Y under 

H0 and H1 are given by  

 

respectively. The log-likelihood becomes 

 

Where 

 

 Is a constant term independent of Y. The optimal 

Neyman-Pearson detection statistics is given by 

 

If T(Y) exceeds a given threshold, a target exists. 

To find the detection threshold, we have 

 

 

 

 

under Hi; i ¼ 0; 1 . The test statistics is the 

weighted sum of chi-squares. It is approximated as 

gamma distribution [32]. If Cq are real positive 

constants and Nq are independent standard normal 

random variables, ∀q = 1,…, K, then the pdf of the 

gamma approximation of 

 

 

where the parameters a and b are given as 

 

where Γ is the gamma function defined as 

For the test statistics in (43), Cq corresponds to αk 

(i) and Nq 2 corresponds to χ2 2N ð Þ k χ. After 

approximating the pdf using the gamma density, 

the probability of detection (PD) and the 

probability of false alarm (PFA) are defined as 

 

 

where aH0 and bH0 are the parameters of the 

gamma density for null hypothesis ð Þ H0 and aH1 

and bH1 are the parameters of the gamma density 

for alternate hypothesis ð Þ H1 . It is known that 

 

For a given value of PFA, the threshold γ is 

calculated using (49), and the probability of 

detection is calculated using (48) with the functions 

available in MATLAB. 

numerical example 

 This section provides numerical examples to 

illustrate the performance of MIMO radar 

waveform with combined peak and sum power 

constraints. A MIMO radar system with M = 5 

transmit and N = 5 receive antenna system is 

considered. First, we consider the power allocation 

among the transmit antennas. Figure 1 illustrates 
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the optimal transmitting power on one of the 

antennas for 100 different target impulse response 

realizations for various values of the norm, p: 1. p = 

1, SPC: This case corresponds to the waterfilling 

strategy, and power is allotted in proportion to the 

quality of the target mode. More power is allotted 

to a better mode. For low values of total power, no 

power is allotted to poor quality modes. As shown 

in Figure 1, the transmit power fluctuates as much 

as 4 W in the transmit antenna under the sum 

power constraint. 2. 1 < p < ∞, peak and sum power 

constraints (PSPC): When the value of p is 

appropriately chosen, this satisfies the sum power 

constraint of the whole system and the peak power 

constraint of the individual antenna. If the 

individual power 

 

Figure 1 Transmit power across the first antenna. 

If the total power limit is set to 2 W, then the value 

of p is 2.32 according to (9), satisfying both the 

sum power limit and the individual power limit. 

Figure 1 shows that the limitation imposed on the 

power of each individual antenna necessitates that 

the same 5 W be spread throughout all five 

antennas. In addition, each antenna is checked to 

make sure its peak power output doesn't go over 2 

W. After four to six iterations, the numerical 

procedure converges to within eight significant 

figures, provided that the beginning value of the 

outer iteration 0 and the initial values for 

calculating qi 1 ((0)) are suitably selected. Third, in 

an EPC where p =, we have: In this scenario, all 

antennas used for transmission get the same 

percentage of the total power. 

Conclusions  

We have looked at how well MIMO radar 

waveforms work when peak and total powers are 

limited. The second-order statistics of the extended 

target impulse response, which provides crucial 

information about the target's properties, is used for 

the creation of the optimal radar waveform for 

MIMO radar. Finding the best answers is the goal 

of the KKT method. When p is equal to one, the 

famous waterfalling concept is shown to be a 

limiting case. In the range 1p, it is proven that the 

power distribution may be computed numerically. 

Using a cumulative power limitation and a peak 

power restriction, we analyse the MI performance, 

MMSE performance, and detection performance. 

At low signal-to-noise ratios (SNRs), it has been 

shown that performance with combined peak and 

sum power limitations is better. Although not ideal, 

this restriction has real-world relevance. Therefore, 

it is proposed that a mixed method of power 

distribution be used. The sum power constraint is 

utilized when the signal-to-noise ratio (SNR) is low 

and the combined peak and sum power restriction 

is used when the SNR is high. 
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